Section 12 Class Examples

12.1 Day 3: Wed Sep 8

Remember that to use RREF we must include the pracma package.

Our goal is to solve the following system of equations: \[ \left\{\begin{array}{rrrrrrrrrr} x_1 &+& 2 x_2 &+&x_3 &+& x_4 & = & 4 \\ x_1 &+& 2x_2 &+& -x_3 &+& -3x_4& =& 6 \\ && x_2 &+& x_3 &+& x_4& =& 0 \\ -x_1&+& x_2 &+& -x_3&+& -4x_4& = &-1\\ \end{array} \right\} \]

We enter the augmented matrix (and echo it back):

A = cbind(c(1,1,0,-1),c(2,2,1,1),c(1,-1,1,-1),c(1,-3,1,-4),c(4,6,0,-1))
A
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1    2    1    1    4
## [2,]    1    2   -1   -3    6
## [3,]    0    1    1    1    0
## [4,]   -1    1   -1   -4   -1

And then we row reduce it using rref:

rref(A)
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1    0    0    1    3
## [2,]    0    1    0   -1    1
## [3,]    0    0    1    2   -1
## [4,]    0    0    0    0    0

The corresponding reduced set of equations is \[ \left\{\begin{array}{rrrrrrrrrr} x_1 && && &+& x_4 & = & 3 \\ && x_2 && &-& x_4& =& 1 \\ && &+& x_3 &+& 2x_4& =& -1 \\ \end{array} \right\} \]

The general solution to this system of equations is \[ \begin{align} x_1 &= 3 - x_4 \\ x_2 &= 1 - x_5 \\ x_3 &= -1 - 2 x_4 \\ x_4 &= free \end{align} \]

12.2 Day 4: Fri Sep 10

Question Solve the following matrix equation using R: \[ \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & ~0~ \\ 2 & 1 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 13 \\ 7 \\ -5 \\ 6 \end{bmatrix} \]

Here we enter A and b separately to illustrate (below) how to augment a matrix with a vector.

A = cbind(c(1,1,-1,2),c(-2,0,1,1),c(1,1,0,1))
b = c(13,7,-5,6) # notice that b is a vector and not a matrix.

Let’s echo them back to see what they look like

##      [,1] [,2] [,3]
## [1,]    1   -2    1
## [2,]    1    0    1
## [3,]   -1    1    0
## [4,]    2    1    1
## [1] 13  7 -5  6

Now I will augment A with b and call it Ab. The syntax is nice:

Ab = cbind(A,b)
Ab
##               b
## [1,]  1 -2 1 13
## [2,]  1  0 1  7
## [3,] -1  1 0 -5
## [4,]  2  1 1  6

And then row reduce.

rref(Ab)
##             b
## [1,] 1 0 0  2
## [2,] 0 1 0 -3
## [3,] 0 0 1  5
## [4,] 0 0 0  0

This tells me that there is a unique solution to Ax = b, and it is \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}. \] Question 2 Can we find a vector d for which A x = d has no solution?

A = cbind(c(1,1,-1,2),c(-2,0,1,1),c(1,1,0,1))
d = c(1,1,-1,2) # notice that b is a vector and not a matrix.
Ad = cbind(A,d)
rref(Ad)
##            d
## [1,] 1 0 0 1
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 0

12.3 Day 5: Mon Sep 13