Section 6 Group Basics

6.1 Groups

Def: A group is a set \(\mathsf{G}\) with a binary operation \(\ast\) that satisfies the following:

  1. (Identity) There exists \(e \in \mathsf{G}\) such that: if \(g \in \mathsf{G}\), then \(e \ast g= g \ast e = g\).

  2. (Inverse) If \(g \in \mathsf{G}\), then there exists \(g^{-1} \in \mathsf{G}\) so that \(g \ast g^{-1} = g^{-1} \ast g = e\).

  3. (Associativity) If \(a,b,c \in \mathsf{G}\), then \((ab)c = a (bc)\).

Furthermore, the group is abelian if it also satisfies the commutative property:

  1. (Commutative) If \(a,b \in \mathsf{G}\), then \(ab = ba\).

Proposition (Uniqueness) Let \(\mathsf{G}\) be a group. Then

  1. \(\mathsf{G}\) has a unique identity element \(e\).

  2. If \(a,b,c \in \mathsf{G}\) and \(ab = e\) and \(ca = e\), then \(a = c\).

  3. If \(g \in \mathsf{G}\) then t here is a unique element \(g^{-1}\) such that \(g g^{-1} = g^{-1} g = e\).

Proposition (Cancellation) Let \(\mathsf{G}\) be a group and \(a,b,c \in \mathsf{G}\).

  1. If \(a b = a c\) then \(b = c\).
  2. If \(b a = c a\) then \(b = c\).

Proposition (\(ax =b\)) Let \(\mathsf{G}\) be a group and \(a,b \in \mathsf{G}\).

  1. The equation \(a x = b\) has a unique solution \(x = a^{-1} b\).
  2. The equation \(x a = b\) has a unique solution \(x = b a^{-1}\).

Proposition (Latin Square) Let \(\mathsf{G}\) be a group and \(a \in \mathsf{G}\).

  1. The function \(\mathsf{G}\to \mathsf{G}\) defined by left multiplication by \(a\), \(g \mapsto a g\), is one-to-one and onto.
  2. The function \(\mathsf{G}\to \mathsf{G}\) defined by right multiplication by \(a\), \(g \mapsto g a\), is one-to-one and onto.

6.2 Subgroups

Def: A subset \(\mathsf{H}\subseteq \mathsf{G}\) of a group \(\mathsf{G}\) is a subgroup if \(\mathsf{H}\) is a group under the same binary operation that it inherits from \(\mathsf{G}\). We write \(\mathsf{H}\le \mathsf{G}\) to denote that \(\mathsf{H}\) is a subgroup of \(\mathsf{G}\) and write \(\mathsf{H}< \mathsf{G}\) if \(\mathsf{H}\le \mathsf{G}\) and \(\mathsf{H}\not= \mathsf{G}\).

Theorem: (Subgroup Test) A nonempty subset \(\mathsf{H}\subseteq \mathsf{G}\) is a subgroup if

  1. (identity) \(e \in \mathsf{H}\), where \(e\) is the identity in \(\mathsf{G}\).
  2. (closure) If \(h_1, h_2 \in \mathsf{H}\), then \(h_1 h_2 \in \mathsf{H}\).
  3. (contains inverses) If \(h \in \mathsf{H}\), then \(h^{-1} \in \mathsf{H}\).

Note: (a) follows from (b) and (c).

Def: The order of an element \(g \in \mathsf{G}\) is the smallest positive integer \(m\) such that \(g^m = e\), and we write \(|g| = m\). If there is no such \(m\), then \(|g| = \infty\).

Def: The center of a group \(\mathsf{G}\) is the following subgroup \[ Z(\mathsf{G}) = \{ a \in \mathsf{G}\mid \hbox{ if $g \in \mathsf{G}$ then $ag = ga$ } \}. \]

Def: If \(g \in \mathsf{G}\) then \(\langle g \rangle\) is the smallest subgroup of \(\mathsf{G}\) that contains \(g\). It is called the cyclic subgroup generated by \(g\). This subgroup contains all possible powers of \(g\): \[ \langle g \rangle = \{ g^k \mid k \in \mathbb{Z}\}. \]

6.3 Cyclic Groups

A group \(\mathsf{G}\) is cyclic if \(\mathsf{G}= \langle g \rangle\) for some \(g \in \mathsf{G}\).

Theorem. (Fundamental Theorem of Cyclic Groups) If \(\mathsf{G}= \langle g\rangle\), then

  1. Every subgroup \(\mathsf{H}\le \mathsf{G}\) is cyclic (thus, \(\mathsf{H}= \langle g^k \rangle\)).

  2. If \(|g| = \infty\) then \(\langle g \rangle = \{ \ldots, g^{-3}, g^{-2}, g^{-1}, 1, g, g^2, g^3, \ldots \}\) and all of these elements are distinct.

  3. If \(|g| = n\) then \(\langle g \rangle = \{1, g, g^2, \ldots, g^{n-1} \}\) and all of these elements are distinct (thus, \(|g| = |\langle g \rangle|\)).

  4. If \(|g| = n\) then the subgroups of \(\langle g \rangle\) satisfy:

    1. \(\langle g^k \rangle = \langle g^d \rangle\), where \(d = \gcd(k,n)\).

    2. \(|\langle g^k \rangle| = \frac{n}{d}= \frac{n}{\gcd(k,n)}\), which is a divisor of \(n\).

    3. If \(\ell \vert n\), then \(|\langle g^{n/\ell} \rangle|\) is a subgroup of size \(\ell\) and is the only subgroup of size \(\ell\).

Note: (d) says that, in a finite cyclic group of order \(n\), there is exactly one subgroup for each divisor of \(n\) and those are all the subgroups.

6.4 Isomorphisms

Def: An isomorphism between groups \(\mathsf{G}\) and \(\mathsf{H}\) is a function \(\phi: \mathsf{G}\to \mathsf{H}\) such that \(\phi\) is and (a bijection) and \[ \phi( a b) = \phi(a) \phi(b). \] We write \(\mathsf{G}\cong \mathsf{H}\) to denote that \(\mathsf{G}\) and \(\mathsf{H}\) are isomorphic.

Theorem (Properties of Isomorphisms): if \(\phi: \mathsf{G}\to \mathsf{H}\) is an isomorphism, and $g then

  1. \(\phi(e_\mathsf{G}) = e_\mathsf{H}\).
  2. \(\phi(g^{-1}) = \phi(g)^{-1}\)
  3. \(\phi(g^k) = \phi(g)^k\) for all \(k \in \mathbb{Z}\)
  4. \(|g| = |\phi(g)|\)
  5. \(\phi^{-1}: \mathsf{H}\to \mathsf{G}\) is an isomorphism
  6. If \(K \le \mathsf{G}\) then \(\phi(\mathsf{K}) \le H\) where \(\phi(\mathsf{K}) = \{ \phi(k) \mid k \in \mathsf{K}\}\).
  7. \(|\mathsf{G}| = |\mathsf{H}|\)
  8. \(\mathsf{G}\) is abelian if and only if \(\mathsf{H}\) is abelian
  9. \(\mathsf{G}\) is cyclic if and only if \(\mathsf{H}\) is cyclic
  10. \(\mathsf{G}\) has \(k\) elements of order \(m\) if and only if \(\mathsf{H}\) has \(k\) elements of order \(m\).